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TEST PARTICLE CALCULATION OF ELECTRIC CURRENTS
IN MAGNETIC FIELD-REVERSED REGIONS

I. INTRODUCTION

Many naturally occurring systems can be thought of as boundary regions between 0ppo-
sitely directed magnetic fields, where the dominant magnetic component of the magnetic
field reverses sign and where “current sheets” are formed. Such field reversal regions occur
in laboratory as well as astrophysical plasmas, and important physical phenomena such as
reconnection can take place.

In space and astrophysical plasmas, the charged particles are usually collisionless. A simple
example of a field reversal which models the Earth’s magnetotail is the quasi-neutral sheet
shown in Figure 1. The x-component of the magnetic field, B.(z), reverses sign at z = 0.
The particle motion in this system is nonadiabatic [1] and has been shown to undergo chaotic
scattering [2,3]. Another example of a field reversed geometry is given in Figure 2. Here there
is an X-type neutral line at x = 0 and z = 0, where the magnetic field vanishes. The particle
motion near an X-line is also chaotic [4,5].

Because of the chaotic particle motion, the properties of plasmas in regions containing
current sheets are nontrivial to study. An approach that has been fruitful is to use test particle
simulations in which the charged particle motion is integrated in prescribed fields [6-13].
Although such simulations do not contain complete physical interactions, the results have
often been successful in explaining observed satellite data [7,10].

A key property of magnetic field reversals is the electric current profile which determines
the magnetic field, the magnetic energy distribution, and particle distribution function, the
last representing the internal and free energy distribution of the plasma. Issues concerning
current distributions have been investigated using test-particle simulations [13-19, 25]. For
example, Burkhart et al. [14] modeled the structure of the “dissipation” region in collisionless
reconnection. In this work, the current was calculated by following a distribution of particles
through a prescribed field. Using the calculated current, a new magnetic field is calculated.
The process was iterated until Ampere’s law is satisfied. In some recent papers, self-consistent
equilibrium current sheets have been computed in the magnetotail geometry [15,17,18]. In
these works, the cross-tail current density is again constructed by binning the contributions
from each test particle using a rectangular (Cartesian) grid and is iterated until self-consistency
is achieved. The particle orbits are computed directly from the equation of motion.

An important feature of the particle motion in and near field reversals is that a given particle
orbit consists of alternating segments of magnetized and unmagnetized motion [1]. A field
reversal thus can be divided into spatial regions according to the type of particle motion.
Consider a particle of energy H = mv?/2. 1t is nearly unmagnetized while in the region
Izl S dj=( sz)l/ 2 where p, is the particles gyroradius in the z-component of the magnetic
field and L is the scale length of the reversal region in the x-component of the magnetic field,
and it is magnetized for |z| R d; [17].

In this report, we examine in detail the process of numerically computing electric currents
in systems in which the particle motion alternately undergoes magnetized and unmagnetized
motion. In addition, we describe an algorithm for approximately separating the magnetic field

Manuscript approved November 15, 1995. 1




into the part due to the plasmas diamagnetism, 47M, and the part due to the actual particle
current, H.

. SINGLE PARTICLES

In test particle simulations, particle motion is computed in prescribed fields. The resulting
equilibrium profiles (i.e., electric currents, particle density, and pressure tensor) can then be
used to calculate the fields, which in turn may be used as a new prescribed field in the test
particle simulation. This process may be iterated to self-consistency. Hence, a fundamental
step is to compute the contribution of each particle to the equilibrium profiles in a given field.
At any given time the distribution which represents a single particle is formally given by

Fop(r,v,8) = L619(3) 5(r —;(t))5(v{—2:L(t))_ (1)

Here L is a characteristic scale length for the system and £ is a characteristic frequency.
Typically, computation of physical quantities is carried out using Cartesian coordinates where
we have

() o (N e
and
() = (R e R

The instantaneous particle and current densities are found by evaluating the zeroth and
first velocity moments of fo, ie. n(r,) = [dv f(r,v,?) and j(r,t) = gn(r,)U(r,1) =
g [ avv f(r,v,t). Defining the normalized variables f = r/L and Vv = v/(QL), these become

n(f, ) = ;}56[1‘ — #(s)) (3a)

and Q
i(#,1) = 290 81 - #(1) (3b)

Instead of evaluating the pressure tensor p(r, £) = m [ dv (v—=U)(v-U) f(r,v,1), we calculate
the second velocity moment of f,p,i.e. q(r,2) =m Javwv f(r,v, t), since this does not require
a priori knowledge of the average flow velocity U. Evaluating this integral, we find

”“z"za(t)e(t) 8 — £(1)]. (3¢)

Tt is trivial to show that q may be written in terms of p, j, and n as,

q(f, 1) =

q=p+ (m/g*n)ii-
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(With this relation in mind, we shall henceforth simply refer to q as the pressure unless
otherwise stated.)

In a standard particle in cell code it is the instantaneous density and current which is
distributed onto a grid for each particle at every time step [20]). The resulting total density
and current is then used to calculate updated fields which are used to “push” the particles for
the next time step. In self-consistent test particle simulations, on the other hand, a particle
is “pushed” through the system in a prescribed field from its point of injection to its point of
escape. After “pushing” all of the particles in a source distribution through the system, the
average currents and densities each particle contributes while in the system are added together
to determine the total current and density which are then used to update the fields. Thus, the
test particle code is very well suited for determining time stationary solutions with very good
spatial resolution using a relatively small number of particles. By its very nature, however,
it can only yield information regarding time evolution in the sense of a series of quasistatic
equilibria.

The contribution of a single particle to the equilibrium quantities is obtained by averaging
the values of those quantities along the trajectory for the time T the particle is in the system ie.

T

@) = 7 [ nte e (4a)
T

3(6) = 7. [ (ke (4)
T

1@ =7 [ atk.na (40)

(Note that the value of T will in general be different for each particle.) If we assume that the
particle phase space information (i.e. position and velocity) are known at the evenly spaced
time intervals, ¢, = nAt, where 0 < n < N and NAt = T, we may approximate the integral in
(4a) as a finite sum. Hence the average single particle density becomes

n(r)— [ > rr,,] (5a)

n=0

Here 6p ¢ is the Kroneker delta function, £, = f(nAf) and D(F) is the normalized single
particle density. In a similar manner, the average current density and pressure which may be
attributed to a single particle may be written as

i#) = L2360 = L2 [an_%v("At)‘srr] (55)
-*—”‘Q" 21N“A‘A6 5
a(f) = "0 = - |5 2 FA0i A, | (50)

3




Where J(&), and Q(£) are the normalized single particle current density and pressure tensor
profiles respectively. Using (5) itis a trivial matter to distribute the single particle density and
current onto a grid. In essence, by using the above technique, we are relating average residence
times of particles in a region to equilibrium profiles.

As a concrete example, we consider particle motion in the modified Harris model of the
Earth’s magnetotail B = By tanh(z/L) X + B, Z (Fig. 1). Here By is the asymptotic value of
the field due to the current sheet, L is the characteristic scale length of the field reversal, B, is
a constant magnetic field normal to the current sheet, and X is in the sunward direction. The
particle motion in this geometry is well documented. (A review can be found in reference
[17].) Since the fields in the modified Harris model are translationally invariant in the x and y
directions, we need only consider variations in the z-direction when calculating the current and
density profiles. Similar techniques may be used for X-line geometries (Figure 2), however,
in that case we must use a two-dimensional grid since there is variation in both the x and z
directions.

Assume that we wish to distribute the current and density profiles onto a one dimensional
grid in the z direction with M + 1 equally spaced points between £Zq,. If on the n' time step,
the particle falls between the m™ and (m+ 1)* grid points, we use a linear interpolation scheme
to distribute the Kroneker delta weight function onto the grid, i.e. we add to the density and
current at each of these points the amounts

Bn(z) = B (6)
Bn(iyr) = Lt (6
8i(2m) = ¥(na (60
BiEnar) = ¥(nar) L= (6
Ag(z) = f'(nAt)V(nAt)lz—mA-%z—‘- (6¢)
Aq(ims) = Hndi(n el = )

JAV4

Here we have defined Az = 2%mq/M. This procedure is followed so long as the particle
position falls between £zmq,. Of course, if we are to use the top (bottom) grid point, we must
use a guard cell, i.e., if the particle lies between % AN Zmax + AZ, (—Zmax A0 —Zpax — A2)
we must add to the density, current and pressure at the top (bottom) point amounts equal to
(6a),(6¢) and (6¢) ((6b),(6d) and (6f)) where now Znm = Zu (m41 = £1). Finally, in order to
insure unit probability of finding the particle in the system, all quantities are normalized such
that the height integrated density (i.e. the sum over the D(z2) contributions at each grid point)
is equal to one.




III. PARTICLE DISTRIBUTIONS

Having found the equilibrium profiles due to a single particle moving through the field
reversal region, we now wish to weight these single particles in such a fashion as to model a
source distribution of particles. In this context there is some ambiguity as to how to perform
the reconstruction based on what is assumed to be known. Here we shall discuss two possible
normalization options. In both cases, we assume that each particle represents a unit volume of
phase space and we launch shells of constant energy and reconstruct the source distribution by
properly weighting the shells. The difference between the two normalization schemes arise in
how we weight the particles on a given energy shell.

In the first scenario, (which is the more general of the two) we assume that we know
the density of the incoming distribution and that the density of the outgoing distribution is
determined by the particle dynamics. In this case, we calculate the density a given particle
gives to the top grid cell when it is initially approaching the midplane (assuming the particle
is launched from above the field reversal region) and normalize the density for that particle
such that this contribution is unity. Note that this normalization implies that if a particle leaves
from the bottom of the current calculation region, the density of the top cell will be unity. If
the particle leaves from the top, however, the density of the top cell will be greater than unity.
Once we have calculated the density and current for each of the particles on a given energy
shell, all of the single particle densities and currents are added together and divided by the total
number of particles that enter into the density calculation region for that shell. Note that in this
scenario, we may either symmetrize the current sheet by assuming equal particle sources above
and below the midplane, or we may launch separate distributions from each source region.

In the second technique, we assume a priori that the particle sources are symmetric and
that we only know the total density which a particle contributes to the top grid cell is equal to
unity. In this case we symmetrize the single particle density and current before normalizing
them. The single particle equilibrium profiles are then normalized such that the density in the
top grid cell is unity. (Note that this now includes particles that are entering and leaving the
system in the normalization.) The single particles profiles for a given energy shell are added
together and divided by the total number of particles which enter the current calculation region
for that shell. ,

In general the first technique is preferable since it reduces the number of assumptions made
in the analysis. Computationally it is much more difficult, however, since we must keep track
of the particle while it is initially approaching the midplane and make a determination as to
when to cut off the calculation of the normalization factor (i.e. how many counts the particle
contributes to the top grid cell.)

For either technique, once we have calculated the current contribution for each shell, we
normalize the profiles by their relative phase space volumes. This is done so that we do not
need to space the shells equally in velocity. For example, suppose we have P energy levels
between = £ . and H = H .. The p" shell is then taken to represent the phase space
volume (v, — Up—1)/Vpmax» Where H= %mv2 and p = 1,2,...,P. The phase space volume

min
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represented by the first shell is simply v1/4,,,,. Note that in this weighting scheme the sum of
all of the shells has unit weight. Finally the shells are weighed by the desired model velocity
distribution function, (e.g. Maxwellian, Kappa, etc.) and summed together to produce the
total density and current for the assumed particles sources.

IV. APPLICATION TO THE MAGNETOTAIL

In the case of the magnetotail, we are primarily interested in the y-component of the current,
since this is the component which produces the x-component of the magnetic field, i.e. the
field reversal. Using the calculated current, we compute an updated magnetic field which we
then use as the input field. For the one-dimensional case discussed here, the magnetic field is
calculated by numerically integrating the calculated y-current profile in the z-direction with
the numerical constant found by requiring the magnetic field to vanish at the midplane. (For a
two-dimensional case such as the X-line geometry, it is simpler to solve for the vector potential
using a two-dimensional Poisson solver.) In updating the magnetic field, we have employed
an overall weighting factor on the current and density so as to insure that the amplitude of
the asymptotic magnetic field remains unchanged. The process is iterated until the input and
calculated field profiles have converged.

Recently it has been found that if all three components of the current are kept, an antisym-
metric y-component of the magnetic field grows until its peak value is on the order of the
x-component [21-23]. This field is believed to be the test particle code (time independent)
analog of a wave which has been shown to develop in the current sheet using time dependent
hybrid simulations [23]. For the purpose of our discussion here, it suffices to note that if the
source distribution of particles is highly field aligned, this wave has a fast growth rate and
saturates, with B, on the order of B,. For more isotropic source distributions, it was found that
the growth rate is much slower (on the order of half an hour for magnetotail parameters) and
saturated with a much smaller amplitude [23]. Thus, it only makes sense to use the test particle
formulation for calculating equilibria for the cases in which we have a nearly isotropic source
of particles. (It is also important to note that in order to successfully run the hybrid simulation,
one needs to input the self-consistent magnetic field structure calculated using the test particle
code. If this is not done, the hybrid simulation starts too far from equilibrium which results in
too much free energy for wave growth and a resulting disruption of the equilibrium.) Hence-
forth, we will suppress the y-component of the magnetic field and use only source distributions
that produce small B,,.

To compare out results with observed quantities, we must convert our simulation results
into physically meaningful units. Using equations (5a-c), we see that the total particle density,
current density and pressure may be written as

Np
Ain(?) = 73 D CDi(2) = 73Du(®) (7a)
i=1
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Np

v A Q A qﬂ ~
@) = 523 CiE) = T YD) (70)
i=1
nmS3 Yo nmQ}
P(®) = =7 D CiPi(2) = — " Pur(?) (7c)

where C; is the weighting applied to the i" particle density, N, is the number of particles
used and 7 is an overall weighting factor used to ensure a constant asymptotic magnetic field
strength. We now need to relate 7, L and our dimensionless density, current, and pressure to
measured values of the asymptotic magnetic field and density.

From Ampere’s law, the asymptotic value of the magnetic field may be related to the height
integrated current through the relation

+oo
28y = w2 [ Juule)(ee/1) ®

In our computational algorithm, we wish to we maintain a constant magnitude for the asymp-
totic magnetic field (i.e., B(—o0)/Bp = —1 and B(+00)/Bg = +1). and hence we require

+o00
/_ Jon(2)(d2/L) = 2 ©)

(> ]

Substituting (9) into (8) we find that the amplitude of the magnetic is given by
By = 47 x 102171]‘(;1—" nT (10)
or equivalently, since g is proportional to By we find that
n/L = 5.19 X 1016%111-1 (11)

where p is the ratio of the ion to the proton mass and Z is the charge state of the ion. Thus we
have a relationship between the simulation quantities 7 /L and physically determined quantities.
(Typically we assume that the ions are protons so thatuy=Z=1) '
From equation (7a) we know that the asymptotic density (or alternatively the density in the
top cell) is given by
ﬁtot(zmax) = 'I%Dtot(émax)

where Zpmay is the maximum value of the normalized position. If we require that 71, (Zmax) = Mo
where ny is the physical particle density given in particles per cubic centimeter, we find that

n ng
Do_T 12
L3 Dtot(zmax) ( )

.




where Dy (5max) is the computed density in the top grid cell (output from the code). Hence
we have a relationship between the physically measured particle density and the ratio of the
simulation quantities 77/L? and Dyo;(Zmax) . From equations (11) and (12) it is now possible to
uniquely determine the values of 7 and L separately for any given physical situation.

In space physics itis often useful to give distances in terms of earths radii (Rg = 6.37 % 106m).
To do this we write L = oRg, and hence from (11) we have

njo = 3.307 x 10232‘“E

and from (12) we have that
Ui Ry

03~ Dior(omax)

These equation may be solved for o to obtain

[_Bng
=0.036, 53— 13
7 ZZDtot(Zmax) ( )

In essence, equation (13) gives us the scale factor for changing from our simulation dimensions
to the physical dimensions for a given particle density and ion species.

Using the above results it is now a trivial process to determine the numerical coefficients to
convert our simulation density, current and pressure profiles into physically meaningful data,
i.e.

R}

ngQd
—‘;70 = 0.125(By /o) nA/m?. (14)

and

Q. 2
M0 _ 7.97 x 10712(By?) dyne/cm?. (15)

In equations (13)-(15) By is measured in nT and n( is measured in cm™3,

An additional quantity of interest is the normalized temperature, T, of the distribution which
is input to the code. This is related to the physical temperature, T, through the relation

T = 2T/mQ*L2. (16)
Solving for the physical temperature in keV, we find
T = 3.88By20*T(Z?/p) keV. (17)

In Figure 3 we give an example the self-consistent density, current, magnetic field and
pressure profiles calculated using the above algorithm where we have assumed that the particle
source is a kappa distribution (x = 4.5) with a bulk drift in the tailward direction of 10%
of the thermal velocity and a density of 0.5cm—3, the asymptotic magnetic field is 20nT, and
B,/By =0.1.




To verify the existence of a self-consistent equilibrium, the density, current and pressure
profiles must satisfy global pressure balance. In general this requirement is given by the first
moment of the Vlasov equation which yields

' B*_ BB
V-(P+mNUU+ —I-—)=0 18
( + + 87 47r) (18)
where we are using the actual pressure P = m [ av (v — U)(v — U) f(r,v), and as usual
NU = [dvv f(r,v)andN = [dv f (r,v) are the particle flux and particle density and Tis the
unit matrix. In 1D with only 8/8z # 0, Eq. (18) becomes

B.B,

Py — el const (19a)
B
Py, — if £ = const (19b)
B +B,*—B?
P, + ks 8;;r L = const. (19¢)

We have also used the continuity equation and the symmetry of the system to deduce that
NU, = 0. In Figure 4 we plot equations (19 a-c) for the case depicted in Figure 3. Note that
all three equations are well satisfied.

V. EFFECTS OF DIAMAGNETISM

An interesting aspect of the field reversed geometry is the effects of diamagnetism. Even
though the density in the current sheet typically only varies by a few percent in the cases that
produce small B,, we find that it is in these cases that the plasma diamagnetism becomes a
significant effect. This is because the particle executes magnetized motion for |z| 2 (p.L)Y/?,
and unmagnetized motion for |z} < ( p,L)1/2. When the particle motion changes character, it
contributes a diamagnetic current in that region. As we will show, this diamagnetic current
depends on the asymptotic pitch angle of the particles with larger pitch angles producing
larger diamagnetic currents. In this section we will discuss the diamagnetic current due to an
individual particle and then discuss the ramifications on distributions of particles.

Regardless of the intervening motion (i.e. chaotic or not), the shift in the y-component of
the guiding center is given by

2b,2H

Bge =\ T+ b2

[1cos a1 + | cos ] (20)

where b, = B,/By is the ratio of the z and x magnetic fields in the asymptotic region,
H = H/mQy?L? is the normalized energy of the particle, Qg = gBp/mc is the cyclotron
frequency in the x-component of the magnetic field, and 3, (B,) is the initial (final) pitch angle
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of the particle as it enters (leaves) the system. From (20), we may calculate the average current
density supplied by a particle to be

() = qAy,/At (21)

where At is the time required for the particle to enter and leave the current calculation region
[24].

In Figure 5a we show the trajectory of a typical orbit and in Figure 5b we show the associated
current profile in the y-direction between z = %5 as calculated using (6a)-(6d). A positive
charge moves in the direction indicated by the arrow. The particle is launched from zg = 6 with
the energy H = 0.24mf22L2, and an initial pitch angle of 100° (using the field conventions
of Figure 1). In its interaction with the neutral sheet, here taken to be the time the particle is
in the current calculation region (|z] < 5), the y-component of the particle guiding center in
the asymptotic regions is shifted by an amount Ay, = 3.03L in a time 482€}; 1. This implies

an average y-current density between z = £5 of §) = 6.28 x 1073 gLQYy. If we average
the numerically calculated current density profile between % = &5, however, we obtain a
net negative total current of —5.5 X 1072 gLQp. This somewhat surprising result of a net
negative current density is caused by the plasma’s diamagnetism and as we shall see is strongly
dependent on the asymptotic pitch angle of the particle.

To understand the difference between the numerically computed average current density and
the value given by gAy,, / At the size of the current calculation region is increased to z < £8
so that the particle is in the calculation region through out its entire orbit. We have calculated
the J, profile using equations (6a)-(6d) at several times to see how the current is deposited
onto the grid. Figure 6 shows the result at three times: () T = 200025 ", () T = 40095 ", and
(c) T = 60082 1 The important feature to note in these figures is the development of current
peaks in regions associated not with any shift in the y-component of the guiding center, but
rather with the injection and exit points of the particles. If these peaks are included in the
numerically calculated average current, the net magnitude of the current density is positive and
in agreement with the value calculated from () = qAy,./At. Since the total average current
(including the peaks at the entry and exit points) is in agreement with the expected value, this
implies we have deposited a net negative current in the midplane which exactly cancels the
positive current at the entry and exit points. This negative current in the field reversal region
is in addition to the positive current due to the meandering motion of the ion.

The formation of the positive current peaks at the entry and exit points and the deposition
of negative currents near the midplane may be intuitively understood if we examine a plot of
, vs. Z (Figure 7a). If we suppose that we are putting the current into bins of width L, then it
is clear that the finite gyroradius effects in the regions where the guiding center is well defined
(i.e. from points a to b and from points ¢ to d) produce a net positive current in the top and
bottom grid cells but tend to leave net negative current near the midplane.

Another way of understanding the development of the current peaks at the entry and exit
sites is to examine the case where B, goes to zero. Here the magnetic field is purely in the

10




x-direction but we are still griding the current as a function of z (Figure 8). Examining Figure 8,
we see that for grid cells above the particle guiding center there are only positive contributions
to the y-current density, whereas below the guiding center there are only negative contributions
to the y-current density. Thus, we would expect to develop a positive current peak above the
guiding center position and a negative current peak of equal magnitude below the guiding
center position. If the two peaks are added together, we obtain the physically reasonable result
of no net current in the y-direction. The same difficulties do not apply to the x-current density
since it has equal positive and negative contributions both above and below the particle guiding
center. (This formation of equal and opposite current peaks above and below the guiding center
is nothing more than the one-dimensional manifestation of the particles diamagnetism.) If we
now allow for finite B,, the same general effects will occur in the asymptotic regions (i.e. far
from the midplane), but now the peaks will tend to separate as we let T increase since the
particles are now moving down the field line. This effect is illustrated in Figure 6a where we
have two equal and opposite current peaks separated by a region of zero current. At the time
depicted in the Figure 6a, the particle was always in the asymptotic region where the magnetic
field is essentially constant.

In appendix A, we show that the net positive y-velocity deposited around the entry and exit
point (or conversely the net negative y-velocity deposited near the midplane) for a particle may
be approximated by

~ X 2
. 2H 2mkb,cot B
by)p, = 4 H sin 8 E 1- | ——= 22a
< y>p 1+bz2 hOJ ( V 1+bz2) ( )

K =Int [———“H_bzz tan,B] (22b)

27bh,

where

The quantity (9,), is related to the current density in the peak through the relation { o), =
T(j,), where T'is the total time between when the particle is injected into, and when it leaves
the current calculation region. Figures 9a-9c are plots of the approximate analytic expression
(solid line) for (dy), as a function of the pitch angle forH = 1.0and (@) b, = 0.1, (b) b, = 0.2
and (c) b, = 0.4. The points (e) are numerically evaluated by “pushing” the particle through
the-assumed field and keeping track of the y-velocity deposited around the entry point of the
particle. We note that for nearly field aligned particles the value of (#y), is small thus indicating
that there is only a small diamagnetic current. For pitch angles near 90°, however, there 1s
substantial diamagnetic current in all cases. The agreement between the analytical and the
numerical results is in good agreement throughout the parameter space. Note the breaks in both
the theoretical and numerical curves. Except for a phase shift which is easily understood in
terms of the approximations made in the derivation of the theoretical expression, the locations
and number of breaks are in good agreement with the numerical results (¢f. Appendix A).
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It is interesting to estimate the critical pitch angle, (3., at which the negative diamagnetic
current deposited in the vicinity of the midplane is equal to the positive current due to the
meandering motion of the particle in the field reversal region (i.e. the pitch-angle at which
the net current supplied by the ion is in the wrong direction to aid in the production of the
field reversal). As a lowest order approximation, we assume that as the particle crosses the
midplane all of its energy is in the y-direction and that it remains in the vicinity of the midplane
for one half of a cyclotron orbit in the z-component of the magnetic field [24). (Note that this
is actually an over estimate of the meandering motion current since not all of the energy will
be in y-direction.) This implies that the net y-velocity deposited near the midplane due to the
meandering motion may be approximated as

(b )m = 7/ 28 [y (23)

Equation (23) is shown as the horizontal dashed lines in Figures 9a-9c. Furthermore, we
assume that the incoming and outgoing pitch-angles are equal, a condition which has been
shown to be nearly the case for Speiser-type orbits [18]. Equating (23) with two times (22) (to
account for both the incoming and outgoing diamagnetic contributions), it is easily shown that
B. is a solution to the equation

2
8 b, sin 3. EK: | - 2wkb,cot B, —1 (24)
7y/1 + b2 =0 \/1+ b2

In Figure 10, we show a plot of B, as a function of b, (e) as given by (24). We also show on
the same figure the value of 3. found by using the actual value of (8,)p (i.e., the solid dots in
Figures 9a-9c) instead of the approximate value (i.e., the solid lines in Figures 9a-9c). There
are two important facets to this figure: the first is that for small values of b,, the theoretical
and numerical values of 3, are in good agreement, the second is that for larger b,, 3. becomes
smaller. This indicates that for an ensemble of particles with random pitch angles the ratio of
the meandering motion current to the diamagnetic will be closer to unity for larger values of
b,.

An important conclusion which may be reached from the above discussion is that if the
average pitch angle of a source of particles is greater than J. the diamagnetic current will be
larger than the current due to the meandering motion. In such cases, since the net current
is in the wrong direction to create the assumed magnetic field reversal, no self-consistent
solutions exist. In essence the assumption of the self-consistent solution to the magnetic field
and the chosen distribution function are mutually exclusive. If on the other hand the average
distribution function has a large drift velocity along the field (vp > vg), the average pitch
angle is much Iess the 3. and the diamagnetic contribution to the current is negligible. In this
case it is a simple matter to iterate to self-consistent solutions provided that B, is negligible.
[15,18,19,25]. As mentioned above, one must be careful in this regime since B, is typically
non-negligible and grows on a short time scale. In the regime reminiscent of the quiet-time
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magnetotail where the field aligned drift is small and the source distribution is nearly isotropic,
the average pitch-angle may be close to the critical pitch-angle. Here the diamagnetic current
and the meandering motion current are of the same order magnitude and small changes in
the distribution function can result in large changes in the self-consistent solutions. Previous
attempts to calculate the current sheet structure in the low drift velocity regime [15] found that
if the drift velocity is made lower than some critical velocity, then no equilibrium exist. It was
also found that larger values of b, resulted in a larger value of the critical drift velocity. This
loss of equilibrium was referred to as the current sheet catastrophe. We believe that what the
authors were actually observing was the transition from the regime in which the meandering
current is larger than the diamagnetic current to the regime in which the opposite is true.

VI. NUMERICAL ALGORITHM

In this section we describe the numerical algorithm used to separate the magnetic field into
the part due to the plasma diamagnetism and the part due to the actual particle current. The
simplest possible technique is to follow the particle guiding center and to evaluate the guiding
center drift and the instantaneous value of the magnetic moment of the particle, p = mv%_ /2B.
Here v refers to the component of the velocity which is perpendicular to the magnetic field,
B is the local magnitude of the magnetic field and the direction of  is antiparallel to the
local magnetic field. These quantities are then used to calculate the particle current and the
magnetization vector M of the plasma respectively. (Note that the magnetization vector Mis
calculated in same way as our other equilibrium quantities, i.e. we distribute the instantaneous
magnetic moment of each particle on a grid and then add them together with the appropriate
weightings.) This technique works well in the asymptotic regions where the guiding center
is well defined but fails near the midplane where the guiding center is only poorly defined.
We therefore use a hybrid model for calculating the equilibrium profiles. In the regions where
the guidirig center is well defined, we transform to the guiding center coordinates (position
and velocity) for distributing the current density, density and magnetic moment onto the grid
whereas in regions where the guiding center is not well defined we use the actual particle
position and velocity for distributing the current and density onto the grid. (See appendix B for
the calculation of the guiding center location.) This method requires that we follow the actual
particle motion in both regions, so that proper phase information is retained for the particle in
changing from the magnetized to the unmagnetized regions and vice versa. For the case of the
magnetotail, the separation between the “magnetized” and “unmagnetized” regions occurs at
the separatrix where the particle changes from non-midplane crossing to midplane crossing.
In appendix C, we show that the phase space location of the separatrix is approximated by

v? < [Py/M— (a/Mc)Ay(x,2))* = [Py/M ~ (g/Mc)Ay(x,2 = 0)]* (25)

where A, is the vector potential for the magnetic field and P, is the y component of canonical
momentum for the particle. The condition given by (24) is simply a statement that for a particle
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to be classified as a midplane crossing, the energy in the z-component of the velocity must be
larger than the effective potential for the z-motion evaluated at the midplane.

In Figure 11, we show the density, current and magnetic field profiles calculated using
the algorithms described in this paper for the case of a Maxwellian with a bulk drift in the
tailward direction of 10% of the ion thermal velocity and a high energy isotropic tail; which
comprises 10% of the total density. Note that in this case, (which has a nearly isotropic source
distribution) the diamagnetization accounts is approximately 80% of the magnetic field due
to the particle currents. In Figure 12 we show the same plots but using a Maxwellian source
distribution which has a tailward drift of twice the ion thermal velocity (i.e., a highly field
aligned distribution). Note that in this case the plasma diamagnetism is only a small correction
to the total magnetic field. One must be careful in interpreting the results in this case; however,
since we would expect there to be a rapidly growing B, field associated with the highly field
aligned distribution.

VII. CONCLUSIONS

In this report we have described a technique for calculating density, electric current and
pressure in a magnetic field reversed region using a test particle simulation. The essence of
the technique is to push a distribution of particles through a model magnetic field which is
fixed in both time and space. For each particle the density current and pressure are laid down
a on grid. After all of the particle trajectories have been calculated we then calculate the
total density, current, pressure and magnetic field profiles that the assumed distribution would
produce. We then compare the assumed and the calculated magnetic fields. If the difference
between the fields is sufficiently small the simulation is stopped and we check to make sure
that global pressure balance is obtained [Eq. (19)]. Otherwise, we mix the assumed and the
calculated fields and use the combined field in a new iteration of the test particle code. This
technique has proven to be very effective for calculating self-consistent equilibrium structures
in complex systems such as the magnetotail because it gives very good spatial resolution
using a relatively small number of particles. As discussed above, however, it can only yield
information regarding time evolution in the sense of a series of quasistatic equilibria.

Using this method we have calculated self-consistent solutions for the equilibrium structure
of the Earth’s magnetotail during quiet-times which are in good agreement with structures
observed in satellite data. An interesting aspect of the solutions is the effect of the plasma
diamagnetism. Using a post-processing algorithm (Sections V and VI), we have separated the
magnetic field into the components due to the plasma diamagnetism, 47M, and the part due to
the actual particle current, H. We find that if the average pitch-angle of the source distribution
is too large, the magnitude of the diamagnetic current is large than the magnitude of the particle
current and in the wrong direction to produce the assumed field reversal. Obviously, in such
cases the two assumptions, i.e., the assumed form of the distribution function and the assumed
magnetic field structure, are mutually exclusive and no self-consistent solutions exist. We
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further showed that for larger values of b, the average pitch angle required for the existence
of self-consistent solutions becomes smaller, i.e. we require a more field aligned distribution
function. We believe that these results explain the reported “current sheet catastrophe” in
Reference [15].
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APPENDIX A

An interesting feature of the results presented in this paper is that as the particle distribution
function becomes more isotropic (less field aligned), the diamagnetic contribution to the total
cross-tail current becomes larger and that in extreme cases it is large enough to cancel the
cross-tail current due to the “meandering motion” of the ions as they cross the midplane.
Obviously, in these extreme cases, the assumption of a magnetic field reversed topology and
the assumed distribution function are mutually exclusive, since the calculated current is either
zero or in the wrong direction to produce the desired field reversal. It is also observed that
a larger field aligned anisotropy is required for convergence for larger values of b, than for
smaller values of b,. It is the aim of this appendix to given a theoretical estimate of the effects
of pitch angle and b, on the diamagnetic current.

Since the net diamagnetic current of a particle in a closed system must be zero, we may
calculate the net diamagnetic current that any given particle deposits in the vicinity of the
midplane by examining the diamagnetic current that a particle deposits as it enters and leaves
the system. In practice, rather than calculating the actual cross-tail current density, we calculate
the net y-velocity an ion deposits as it passes through the calculation region. Whereas these
only differ by a normalization factor, it greatly simplifies the analysis.

To determine the net positive y-velocity, (,), a particle deposits around the point where
it is launched into the system and the point where it escapes from the system we need to
calculate the z-position, the z-velocity and the y-velocity as a function of time. In terms of our
normalized units, z = z/L, ¥, = v,/ (L), and D, = v,/(QpL) these are given by

2H 1
A=ﬁ + b 3 3 1 b2 Al
=1 \/——I_H,zz[zTCOSﬂ+————1+bzzsmﬂsm(\/ +zr)] (a1)

A

b, = 1—_'—_2%;3 [bzcos B + sinBcos(y/1 + b;2 'r)] (A2)
By = V2H sing sin(y/1+ b2 7) (A3)

where H = (mv?/2)/(mS2L?) is the normalized energy, 7 = r/ L is the normalized position,
£ is the pitch angle of the particle, and b, = B, /By is the ratio of the constant z-component of
the magnetic field with the asymptotic value of the x-component of the magnetic field. '

During a single excursion of the particle above the 2 = 2 plane, we add to the net y-velocity
in this region, (0,),, an amount

(Dy) = " VaH sin B sin(y/1+ b2 1) dr (4d)

T2k
where 7o, and 75 .1, are the times at which the particle cross into and out of the regionz > Zo
respectively. In actuality, this implies that 75, and 741 should be two consecutive solutions
to the nonlinear equation
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b,rcos B + \/_—1_1_-&-=b=2 sin Bsin(y/1+ b271) =0 (A5)

2

Rather than solve (A5) for each excursion of the particle above the 3 = 7 plane, we hold
the position of the guiding center constant in performing the integration. We then shift the
location of the guiding center down by an amount, Az, equal to what it would drift in a
complete cyclotron period. This allow us to obtain approximate analytic vatues for the time
limits in the integration. The shift in the Z location between two successive integration is given
by

R 2wb, =
= 2H
Az T+52 V' 2H cos B (A6)

Note that if KAz > kg, where K is an integer and fig is the normalized gyroradius of the
particle, the particle will not go above the % = 7 plane and will thus no longer contribute to
the net y-velocity deposited in that region. Referring to Figure (13), we see that in a given
excursion above the z = 7o, the particles phase angle goes from 6, to m — 6; and hence the
time integration runs from

o = (1 + b,2)"Y? (27 + 64) (A7a)
to
o1 = (14 b,2) V2 (2n(k +1/2) — 6k) (A7b)
where
2mkb
6, = sin~! | ———= cotf A8
¢ [\/ 1+ b2 ] (48)

Carrying out the integration with the approximate limits, we obtain

~

sin 3 cos O (A9)

(O =/ T b2

or

" 2
8H 27kb,
Oyk) = sin 11— | ——=—=cot A10
©0) =\ T2 ﬁJ (m ﬁ) o
The total y-velocity deposited above the 2 = 7o plane is found by summing the y-velocity

deposited in that region during the individual excursions, i.e.,

K

(D)o = Z(ﬁyﬁ- (A1)

k=1
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Here K is the number of excursions that the particle makes above the Z = 2o plane and is given
by

27h,

2
K=m[___x/1+bz

Combining equations (410), (A11), and (A12) yields an expression for the net positive y-
velocity deposited above the Z = Zo plane. In addition, we have an equal amount of positive
y-velocity deposited symmetrically below the Z = o plane. This is because until a particle has
drifted at least one gyroradius in the z-direction the negative and positive contributions to the
y-current cannot average to zero. Thus, we see that the total y-velocity in the peaks located
around the entry and exit points of the particle is given by

(Dy)p = 2 (Dy)ror- (A13)

In Figure 9 we show the total y-velocity in the current peaks as a function of the pitch angle as
given by given by (A13) (solid line) and as determined by numerically “pushing the particle”
through the field (¢). As can be seen, the agreement is quite good. One notes, however,
that the location of the “breaks” in the curves, which occur whenever the particle is able to
add an additional excursion above the Z = 2 plane, fall in slightly different locations for the
theoretical and numerically determined results. For the theoretical curves, the breaks in the
curves occur at those pitch-angles for which the particle is able to make an additional excursion
above the z = Zg plane, i.e. when

2mkb: ] (A14)

V1+b2

In actuality, the breaks in the curve occur at those pitch angles for which (A5) picks up two
additional roots. This happens whenever the amplitude of the sinusoidal variation in 7 becomes
sufficiently large that an additional peak intersects the linear term in (A5). Again, the actual
values require a solution to the full nonlinear equation. For k = 0, this is easily done yielding

B = tan_l[

Bo = tan~' (by). (A15)

It is important to note that for predominantly field aligned orbits, i.e., those with pitch angles
less than 3 as given by (A15) there are no solutions to (A5) thus indicating that there is no net
y-velocity deposited above the z = %o plane. Note that for pitch-angles less than Sy as given
by (A15) the numerically determined points in Figures 9a-9c are all zero. For the other roots
the solution is not as simple. As a lowest order approximation to the actual solutions we may
approximate the roots as occurring whenever the amplitude of the sinusoidal term in (AS) is
equal to the value of the linear term at the points /1 + b2T = (4k + 1) /2. This yields the
values of G, given by
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B = tan~! [(2k+ %) 1rbz]. (A16)

In actuality, the solutions occur for values of 7 less than this and thus the values of f are
slightly off. Referring to Figure 14, however, where we have plotted the linear term in (A5)
along with three examples of the sinusoidal term with amplitudes given by (a) Bo as given by
(A15) and (b)$3; and (c) 3, as given by (A16) we see that (A16) gives an excellent approximation
to the actual value of 3. Comparing equations (A14) and (A16) we see that there is a small
positive shift in the actual location of the 5 over the approximate location.

APPENDIX B

In this appendix we explicitly write out the transformation between the actual particle
position and the guiding center position for magnetic fields of the form B = By f(z)X + B.Z.
In general, the transformation is given by

vxB

R,.,=r4 —m—,
s =T+ {g/Mc)B?

(B1)

where B = [By f (2)] 24 B,2. Using (B1), itis trivial to show that the guiding center coordinates
Xge, Yyc, and Zg are given by

_ b, v,

Xee=2z+ W[F P b7 (B2a)
_ f (Z) v, + by Ux

Ve =yt Qo [f(2)2 + b2 (B20)
_ f(z)v

Thus, we see that given the local value of the magnetic field and the instantaneous velocity,
it is a simple matter to calculate the instantaneous guiding center position. For unmagne-
tized motion in the field reversal region, the instantaneous guiding center has little physical
significance or practical utility. '

APPENDIX C

In sections V and VI, we showed that in order to determine the effects of plasma diamag-
netism on the equilibrium structure of the magnetotail we needed to separate the orbit into
segments which are midplane crossing and segments which are non-midplane crossing. In
the former, when calculating equilibrium profiles we distribute the actual particle positions
and velocities onto a grid, whereas in the latter we distribute the guiding center positions and

20




velocities onto a grid. In this appendix we present an approximate expression for the phase
space location where the particle changes its behavior from crossing to non-crossing.
We begin by considering the Hamiltonian of a particle in the modified Harris magnetic field

1
H(x,2, Vs, v, Py) = inﬁ + U(x,z, vx, Py) (c1)
where
1 1
U(x7 Z, 'UJhPy) = EM’UXZ + EM[P)?/M_ (q/MC)A)’(x’ Z)]Z’ (CZ)

is the effective potential for the z-motion, P, is the y-component of the canonical momentum
and A, is the vector potential. For the modified Harris magnetic field, A, may be written as

A,(x,z) = —BoLIn[cosh(z/L)] + B.x (C3)

If b, < 1 the oscillations in the z-direction are much faster than the oscillations in the x-
direction. As a first approximation, we therefore assume that during a single z-oscillation the
values of both v, and x are constant. This approximation is not strictly valid. Rather, if we take
v, to be a constant we should approximate x = x + v, t. For our purposes, however, we find
that the simple approximation is sufficient. This is because the orbits which incur significant
error using the standard current calculation technique have large pitch angles and thus small
v, Setting v, and x constant, the condition that a particle is non axis crossing is given by

H(JC, 2y Uy, 'Uzapy) < U(x,z =0, vy, Py) (C4)

i.e., the energy of the particle must be grater than the effective potential at the midplane. This
criterion is graphically depicted in Figure 15 where we have drawn the effective potential for
(Py/M — Q,x)/(QL) = (a) 1, (b) 0, and (c) —1, and we have defined Q,, = gB,/Mc. We have
neglected the Mu,2 /2 contribution to the effective potential, since it only provides a constant
offset. The dashed lines correspond to orbits of different energies as compared to effective
potential (c). Particle A violates the inequality in (C4) and is midplane crossing. Thus we
use actual particle coordinates for calculating the equilibrium profiles. Particle C represents
a solution to the inequality (C4) and is non-midplane crossing. Thus we would use guiding
center coordinates for calculating the equilibrium profiles. Particle B represents the equality
condition in (C4) and is at the transition point between crossing and non-crossing motion.
Solving (C4) for v,2 we find that the condition a particle with given x, z, and v, is given by

v2 < [Py/M— (a/Mc)A(x,2)) — [Py/M — (a/Mc)Ay(x,z = 0)]%. (C5)

We note that since we have written C5 without making explicit use of the Harris model of
the magnetic field, we may use other field reversal models by simply using the relevant model
for A, provided that the approximations regarding x and vy are still valid.
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Figure 1: Modified Harris magnetic field geometry

Figure 2: X-line magnetic field geometry
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Figure 3. Self-consistent density, current, magnetic field and pressure tensor profiles calculated
using a kappa distribution (x = 4.5 ) with a bulk drift in the tailward direction of vp = 0.1vy
The units on the pressure tensor elements are nanodyne / cm?,
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Figure 4. Plot of the left hand side of equations 19 a-c using the results depicted in Figure 3.
Since all three curves are essentially flat, we see that pressure balance is maintained to a high

degree of accuracy.
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Figure 5: a) Trajectory of an ion with energy H = 0.24 L2Q2, initial pitch angle 8 = 100°,
initial phase angle ¢ = 0° and initial starting position z/L = 6. b) Current profile of the
particle in Fig. 3.a as calculated from the standard ridding algorithm with the top grid cell -
located atz/L = 5.
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Figure 6: Current profile for the particle in Fig. 5a at the three times: 2)T = 2008}, ",
b)T = 400 Qal, and ¢)T = 600 961. The top grid cell is taken to be z/L = 8.
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(b)

Figure 7: a) v,/SpL as a function of z/L for the particle in Fig. 5a. The particle is non
midplane crossing on the segments a-b and c-d, and we use guiding center coordinates. The
particle is midplane crossing on the segment b-c and we use true particle coordinates. Notes
that if actual particle coordinates are used on the segments a-b and c-d, there is an excess of
positive y-velocity in the regions 5.3 < z/L < 6.7 and —6.3 < z/L — 5 and an excess of
negative y-current in the regions 0.5 < z/L < 1.9 and =2 < z/| < 0.3. b) y/L as a function
of z/L for the same particle. Note the VB drift in the regions around |z/L| = 2 and the large
y-velocity at |z/L| = 1.
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Figure 8: Schematic diagram of ion and electron gyro orbits in a constant magnetic field
B = Bpk. Note that above the guiding center the particles have only positive y-current,
whereas below the guiding center the particles have only negative y-current
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Figure 9: Magnitude of the positive y-velocity deposited near the launching point of the particle
as a function of the pitch-angle and for (a) b, = 0.1, (b) b, = 0.2 and (¢) b, = 0.4. The solid
line is the approximate expression given by (22a) and (22b). The dots are found by pushing
the particles through the magnetic field. The dashed vertical lines indicate the pitch-angle that
below which there is no net positive velocity left at the launching point.
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Figure 10: Plot of the critical pitch-angle 3 for which the error current at the midplane equals
the meandering current at the midplane as a function of b, as calculated from Eq. 24 (e). The
other points (w) are calculated using the numerically determined values of (By)p-
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_ Figure 11. Self-consistent density, current and magnetic field profiles calculated using a
Maxwellian with a bulk drift in the tailward direction of vp =

isotropic tail which comprises 10 percent of the total density.
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Figure 12. Self-consistent density, current and magnetic field profiles calculated using a

Maxwellian source distribu

Up = 2 Vshe

tion of particles with a bulk drift in the tailward direction of
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Figure 14: Plot showing graphical solution to equation (A.5). Two new roots to the equation
occur when the amplitude of the sinusoidal oscillation b, 'tan(8;) sin(1/1 + b;2 7) increases

sufficiently to cross the line 4/1 + b,2 7. The curve depicted are for (a) B = tan~!(b,), (b)
B¢ = tan~1(57b,/2), and (c) B¢ = tan~!(97b./2).
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Figure 15: Effective potential for the z-motion for (Py/M — Q,x) /(L) = (a) 1, (b) 0, and
(c) —1. The dashed lines correspond to orbits of different energies as compared to effective
potential (c). Particle A violates the inequality in (C4) and is midplane crossing. Particle C
represents a solution to the inequality (C4) and is non-midplane. Particle B represents the
equality condition in (C4) and is at the transition point between crossing and non-crossing
motion. '
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